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ABSTRACT

The aim of this study was to evaluate the performances of two growth models for prediction of
Salmonella Enteritidis in ground beef, namely the extended logistic model and the ComBase web
edition Baranyi model. Performances of the growth models were evaluated by using various statistical
criteria, namely the square root of the mean of the square error (RMSE), calculation of the residuals,
and student T. test. It was found that both models described well the growth curves for Salmonella
Enteritidis at various initial doses, constant and dynamic temperatures. In addition, no significant
differences were observed between the estimated values of data points at various initial doses and at
constant and dynamic temperatures with the two models (p>0.05) except at the initial dose of 2 log
(CFU/g) that was significant (p<0.05). The residuals for Salmonellae described by both models at
various growth conditions were very small; all residuals for the data points were less than 0.5 log CFU/g.
This shows that all points were in the acceptable prediction zone between -1 log and 0.5 log CFU/g. In
addition, the averages of RMSE values at various initial doses were very low, which were 0.06 and 0.07
(log CFU/g) for the extended logistic and Baranyi model, respectively. Similarly, the averages of RMSE
values at various constant temperatures were low, with averages being 0.08 and 0.12 (log CFU/g) for
the extended logistic and Baranyi model, respectively. The RMSE values at low and high range dynamic
temperatures were very low, being 0.16, 0.15 with the extended logistic model and 0.12, 0.07 with
Baranyi model, respectively. The results of statistical analysis showed that there was no significant
difference in the performances of the two growth models, suggesting that the models were equally
suitable for describing the growth of Salmonella Enteritidis at various initial doses, constant and
dynamic temperatures.

Keywords: salmonella enteritidis, minced beef, extended logistic, the ComBase web edition Baranyi
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1.INTRODUCTION

The concept of predictive microbiology is describe the behavior of microorganisms
that a detailed knowledge of the growth of under different environmental factors
microorganisms in food products enables (physical, chemical, competitive), which
objective evaluation of the microbiological enable predictions of growth and/or
safety and quality of foods (Dens et al., survival of an organism of concern. Simply,
1999). Following the understanding of this predictive microbiology models may be
microbial ecology, the goal of predictive used to estimate changes in the size of a
microbiology come with the power of microbial population in a food product as a
developing mathematical equations that function of environmental parameters such
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as temperature (McMeekin et al., 1993).
The most commonly used growth models in
food microbiology are of two types:
empirical (algebraic expressions), and
growth rate models (almost all variants of
the continuous logistic equation) which
called the Verhulst or mechanistic model
(Peleg and Corradini, 2011). Empirical
models are built up to summarize or
describe the data in mathematical curve
(curve fitting). The mechanism produced
this data is unknown or poorly understood.
Examples are the logistic models. When the
underlying mechanism is known or
available, in this case mechanistic or
deterministic or theoretical models can be
constructed to represent this mechanism
(Draper, 2006). Juneja et al. (2009)
compared the performances of two
empirical and two mechanistic models for
describing the growth rate of Salmonellae
in irradiated ground beef, but only at
constant temperatures. Performances of
these models were evaluated by using
various statistical criteria. All the chosen
models fitted well to the growth data of
Salmonellae based on these criteria. The
results of statistical analysis showed that
there was no significant difference in the
performances of the four primary models,
suggesting that the models were equally
suitable for describing isothermal bacterial
growth. In addition, Yilmaz (2011)
compared the performance of the Baranyi
model for prediction of the effect of plant
essential oils on growth potential of
Salmonellae in fish products stored under
aerobic conditions with those of the
empirical modified Gompertz and logistic
models and Huang models. Recently, the
growth kinetics of Salmonella Enteritidis in
minced beef has been studied using the
extended logistic model developed by
Fujikawa et al. (2003; 2004) (unpublished
data). The authors in their study
successfully  predicted  growth  of
Salmonella Enteritidis in raw ground beef
at various initial doses, constant and
dynamic temperatures. Moreover, they
developed a secondary model for the
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prediction of growth of Salmonella
Enteritidis in raw ground beef by modeling
the initial dose of the pathogen and
temperature with the combination of
primary growth model and a polynomial
model (secondary), the secondary model
developed reincorporated into the equation
of the primary model to produce the tertiary
model. Here in the present study the aim
was that the estimated or predicted data
with the extended logistic model
(unpublished data) compares with that of
online ComBase Baranyi model, empirical
and mechanistic, for evaluating their
performances for the prediction of growth
of Salmonella Enteritidis in raw ground
beef.

2.MATERIALS AND METHODS

2.1. The extended logistic model

The growth data, three trials at various
initial doses, constant and dynamic
temperatures, used in the present study was
previously studied with the extended
logistic  model  (unpublished data).
Salmonella cell preparation, Salmonella
inoculation, storage of inoculated ground
beef, bacterial cell counts were done in the
same manner as for ground chicken and
liquid egg products (Zaher and Fujikawa,
2011; Sakha and Fujikawa, 2012; 2013).
Averages of Salmonella counts for the three
trials of various initial doses or the constant
temperature experiments or the three
samples of the dynamic temperature
experiments were calculated for analysis
(Zaher and Fujikawa, 2011; Sakha and
Fujikawa, 2012; 2013). Salmonella counts
of the samples during the storage were then
analyzed with the extended logistic model,
which is expressed as follows (Fujikawa et
al., 2003; 2004):

dN N N_.

._er l_ m l_ min !
LR L

(1)

Here N is the population of a

microorganism (CFU/g) at time t (h), r is
the rate constant of growth (1/h), Nmax is the
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maximum population (CFU/g), and Nmin is
the initial population (CFU/g). m and n (>0)
are parameters related to the curvature of
the deceleration phase and the period of the
lag phase, respectively.

The equation was solved numerically with
the 4th-order Runge-Kutta method.
Numerical data of Salmonella counts were
analyzed by a computer program to fit to the
growth model, which was developed using
a spreadsheet software program, Microsoft
Excel (Fujikawa and Kano, 2009). Here
microbial populations estimated by the
model (CFU/g) were then transformed to
logarithm to make a growth curve.

Growth at a dynamic temperature was
predicted using the values of parameters in
equation (1) studied at constant
temperatures (Fujikawa et al., 2003; 2004;
Zaher and Fujikawa, 2011). The value for
(r) at the measured temperature of the time
interval during an experiment was obtained
from the square root model (McMeekin et
al., 1993).

2.2. ComBase DMFit web edition Baranyi
model:

The same growth data, at various initial
doses, constant and dynamic temperatures,
estimated by the extended logistic model
were then evaluated by web edition Baranyi
model. DMFit web edition is a web-based
application to fit bacterial curves where a
linear phase is preceded and followed by a
stationary phase. The models of the
ComBase Predictor which can be accessed
via the ComBase web site
(http://www.combase.cc) were developed
using DMFit (Baranyi and Roberts, 1994).

This edition of DMFit allows the user to
view a graphical representation of
microbiological growth / survival data and
fit a growth/survival model to the data to
obtain parameter estimates for maximum
growth/death rate, lag time (or shoulder),
initial cell count, final cell count, and
estimate  standard errors on these
parameters

2.2.1. ComBase Models
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Bacterial curves can be fitted to two
different types of models, the first is the
model of Baranyi and Roberts, and the
second one is the trilinear model, biphasic
models and linear models. In the present
study the comparison carried out with
model of Baranyi and Roberts. The model
of Baranyi and Roberts (1994) describes a
sigmoid bacterial curve. The main
difference between this model and other
sigmoid curves like Gompertz, Logistic, etc.
is that the mid-phase is close to linear unlike
those classical sigmoid curves which have
a pronounced curvature there. The model of
Baranyi and Roberts has 4 main parameters
(Initial Value, lag/shoulder, maximum rate,
Final Value) and 2 curvature parameters:
mCurv and nCurv which describe the
curvature of the sigmoid curve respectively
at the beginning and at the end of the
growth phase. In this version, the values of
mCurv and nCurv depend on the model
selected by the user: When selecting model
of Baranyi and Roberts (no lag), the
curvature parameter mCurv is set to zero,
the model describes only the growth/death
and the stationary phase. When model of
Baranyi and Roberts (complete model) is
selected, default values are used for mCurv
and nCurv: mCurv =10 and nCurv =1
(Baranyi and Roberts, 1994):

2.3. Secondary models

Secondary models for the rate constant of
growth or maximum growth rates (r or pimax)
and Nmax were developed to express the
effect of various initial doses, constant
temperatures on these parameters. Similarly,
the parameters of the secondary model were
estimated using the RMSE, the coefficient
of regression and the student T. test.

2.4. Statistical analysis

Performance of the mathematical model
was evaluated with (i) the square root of the
mean of the square error, RMSE between
log-transformed  cell concentrations
estimated with the model (log Nest) and
those observed (log Nobs) at the observation
points, which is described below and (ii) the
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residual, which is the value of log Nobs
minus log Nest, for each observation point
during the growth (Oscar, 2009). (iii) The
student T. test has been used to clarify if
there were significant or non-significant
differences between the estimated data with
both models at the same time of observation
points at various initial doses, constant and
dynamic temperatures.

k
Z (log th\' - 10g N_im-.r )2
RMSE == p

()
Here Kk is the total number of observation
points in a growth curve. Statistical analysis
of data including regression analyses was
performed with Microsoft Excel.

3.RESULTS

3.1. Prediction performances at various
initial doses

Growth kinetics of Salmonella Enteritidis
(a cocktail of four strains) in raw ground
beef at various initial doses of Salmonella
Enteritidis was first compared using the
extended logistic and Baranyi & Roberts
models. Salmonella was injected into
ground beef at various initial doses ranging
from 2.3 to 5.3 log CFU/g and then stored
at a given temperature of 24°C. The growth
curves were precisely described with the
two growth model. There were no
significant ~ difference  between  the
estimated values of data points with the two
models (p>0.05), except at the initial dose

of 2 (log CFU/g) it was significant (p<0.05).

The values of RMSE were very low for
logistic and Baranyi models (table 1A, B),
and there were no significant differences
(p>0.05) between RMSE values of logistic
and Baranyi models. Also, the residuals for
Salmonella described by both models were
very small; all residuals for the data points
were less than 0.5 log CFU/g. This shows
that all points were in the acceptable
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prediction zone between -1 log and 0.5 log
(Figure 1).

The values of the rate constant of growth (r)
with the extended logistic were similar
among them, ranging from 0.60 to 0.70
(1/h), therefore, the average was calculated
and used in the growth model. Similarly,
with Baranyi & Roberts model the values of
(r) were similar among them, ranging from
0.20 to 0.30 (1/h) (table 1). Although that
statistically, there =~ were  significant
differences (p<0.05) between the values of
(r) resulted by the two model.

Also, the lag periods in the growth curves
of the extended logistic model were also
similar, ranging from 1.6 to 3.1 h
(unpublished data). However, the Nmax
values in the stationary phase calculated
with both models were clearly higher at the
higher initial doses. Values for Nmax for
extended logistic were 7.2, 8.3, 8.8, and 9.1
log CFU/g at the initial doses 0f 2.3, 3.3, 4.1,
and 53 log CFU/g, respectively
(unpublished data), while those calculated
with Baranyi model were 7.14, 8.29, 8.73
and 9.13 at the initial doses of 2.21, 3.20,
4.11, and 5.24 log CFU/g, respectively. It
important to mention that Baranyi &
Roberts model always use its own initial
doses, which were a little bit lower or equal
to the observed initial doses in the present
study.

The relationship between the values of
initial dose (I) and the values of Nmax,
calculated with the extended logistic model,
was expressed with a cubic equation with |
(equation 3) (unpublished data).

N_. =0.030/°-0.521> +3.21 +2.2 3)
While, the cubic equation expressed this
relationship from the Nmax values resulted
from Baranyi & Roberts model (equation 4)
was as follow:

_ 3 2
N_, . =0.091"-1.217I"+5.7+0.50 4)

The equation (3) could precisely describe
the data points with the coefficient of
regression of 0.999. Moreover, equation (4)
could also precisely describe the data points



Evaluation of predicting performances for the growth of salmonella enteritidis in minced beef

with the coefficient of regression of 1.00
(Figure 2).

A growth curve of Salmonellae in ground
beef at a given value of | was then estimated
with equation 2 to validate the polynomial
model for Nmax. The value for | in the
experiment was measured to be 3.8 log
CFU/g and thus the Nmax value was
estimated to be 8.6 log CFU/g with
equation 3. Other parameter values in the
growth model (equation 1) were the
averages from the values of the curves
studied at different initial doses. Namely
r=0.64, m=0.58, and n=8.5. With those
parameter values, a growth curve was
predicted and the curve was very close to
the observed data. The RMSE value for the
curve was as low as 0.12 log (CFU/g). This
result showed that the polynomial model
with | was applicable to estimate Nmax at a
constant temperature (unpublished data).
On the other hand, Baranyi model similarly
predicted well the growth curve at initial
dose of 3.73 log CFU/g and the Nmax value
was estimated to be 8.6 log CFU/g (Figure
3). The RMSE value for the curve was as
low as 0.09 log (CFU/g).

3.2. Prediction performances at constant
temperatures.

The growth kinetics of Salmonella
Enteritidis in the ground beef was then
compared using the extended logistic and
Baranyi models at constant temperatures
ranging from 8°C to 36°C. Here the values
for | were constant (3.2 log CFU/g) at these
temperatures. No Salmonellae growth was
observed at 8°C model. Growth curves of
Salmonella in the ground beef at the
constant temperatures were all sigmoidal
and well described with the growth
(unpublished data). The RMSE were very
low ranging between 0.06 to 0.10 log
CFU/g (Table 2A). The Baranyi model also
showed good fitting for Salmonella
Enteritidis growth curves at different
temperatures resulted in low values of
RMSE ranged between 0.08 to 0.15 log
CFU/g (Table 2B), which were
significantly different from the values by
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the logistic model (p<0.05). Also, the
residuals for Salmonella described by both
models were very small; all residuals for the
data points were less than 0.5 log CFU/g
(Figure 4A, B). Moreover, No significant
differences were noticed between the
estimated values of data points with the two
models (p>0.05) at wvarious constant
temperatures. The values of r for
Salmonella in the beef calculated with the
Baranyi models were well described with
the square root model (Fig. 5). Linear
regression lines for r of Salmonella
calculated with the extended logistic and
Baranyi models were described by
equations 5 and 6, respectively. Here T is
temperature (°C).

Vr =0.0401(T —3.47) )
Jr = 0.0264(T +4.55) ©)

The coefficients of determination
for the extended logistic and Baranyi
models were 0.995 and 0.985, respectively.
The wvalues for Nmax for Salmonella
calculated with the extended logistic model
were described as a line broken at 28.3°C,
which is shown in equation 7 (unpublished
data).

IOgNmux = 0.158T +4.67 12ST<283

=9.15 28.3<T<36 (7)
The values for Nmax calculated with Baranyi
model were described also as a line broken
at 28.3°C (Fig. 6) (equation 8).
log N, =0.1557T +4.66

=-0.00387 +9.09

12<T<28.3
28.3<T<36 (8)

3.3. Prediction performances at dynamic
temperatures

The values for m and n for Salmonella at
these temperatures were almost constant,
being 0.47 and 6.4 as the averages,
respectively (unpublished data). Using the
above equations (equations 5, 7) and the
averages of the parameters of the growth
model (equation 1), growth curves of
Salmonella were predicted at dynamic
temperatures. Here the value for | was
constant (3.2 log CFU/g). The extended
logistic growth model could well predict
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Salmonella at both low and high dynamic
temperatures. The RMSE values for
Salmonella were very low, which were 0.16
and 0.15, respectively (unpublished data).
On the other hand, Baranyi model also
resulted in good prediction for Salmonella
at low and high dynamic temperatures (Fig.
7). The RMSE values were very low, which
were 0.12 and 0.07, respectively. The

residuals resulted from both models at low
and high dynamic temperatures were very
small; all residuals for the data points were
less than 0.5 log CFU/g (Figure 8).
Moreover, No significant differences were
noticed between the estimated values of
data points with the two models (p>0.05) at
low and high dynamic temperatures.

Table 1: Growth characteristics of Salmonella Enteritidis described with the extended logistic
and Baranyi models in raw ground beef at various initial doses.

A.Extended logistic model

Nmina r b Lag NmaxC RMSEd

B. Baranyi model
Nmin r Lag Nmax RMSE

23 0.59 3.1 7.24 0.08
3.3 0.71 2.29 8.27 0.06
4.1 0.63 1.62 8.8 0.02
53 0.55 1.91 9.14 0.06

2.21 027 3.23 7.14 0.08
3.20 029 2.7 8.29 0.08
4.11 0.26 1.44 8.73 0.05
5.24 0.23 1.61 9.13 0.08

a. Nimin 1s the initial population (CFU/g)
C. Nmax is the maximum population (CFU/g)

b. r is the rate constant of growth (1/h)
d.RMSE the square root of the mean of the
square error

Figure 1: Residual plots for the populations of Salmonella along through the storage period.
Symbols: solid Symbols expressed with the extended logistic model and open Symbols
expressed with the Baranyi model. Symbols: e, 10%3; m, 10°3; A, 10*2; ¢, 10°*
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Fig. 2: The initial dose dependency of the values for Nmax. The Nmax values were described with
Baranyi model.
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Fig. 3: Predictions of the pathogen at the initial dose of 10°** CFU/g. closed circles are measured
values. Growth curves are described with Baranyi model.
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Table 2: Growth characteristics of Salmonella Enteritidis described with the extended logistic
and Baranyi models in raw ground beef at various temperatures.

A.Extended logistic model B.Baranyi and Roberts model

Temp. ra Lag (h) Nmx’ RMSE® r Lag(h) Nmx RMSE

8°c 0.002 * 2.93

12 °c 0.12 224 6.43 0.08 0.05 19.7 6.38 0.11
16 °c 0.23 7.06 7.38 0.11 0.10 6.48 7.35 0.13
20 °c 0.41 3.5 7.79 0.06 0.17 3.27 7.76 0.10
24 °c 0.71 2.6 8.27 0.06 0.29 2.17 8.29 0.08
28 °c 0.97 2.44 9.16 0.08 0.39 2.04 8.98 0.14
32° 1.44 1.74 9.16 0.07 0.55 1.23 8.96 0.15
36 °c 1.58 1.72 9.12 0.10 0.61 1.26 8.95 0.15

*no lag model (this curve cannot be described except by no lag Baranyi model)
a. r is the rate constant of growth (1/h) b. Nmay is the maximum population (CFU/g)

c. RMSE the square root of the mean of the square error
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Figure 4A, B: Residual plots for the populations of Salmonella along through the storage
period at different temperatures. Symbols A: e, 12; m, 16; A, 20. Symbols B: e, 24; m, 28; A,
32; ¢, 36. Solid Symbols expressed with the extended logistic model and open Symbols
expressed with the Baranyi model.
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Figure 5: Square root models for the rate constant of growth for the Salmonella described with
the Baranyi model. Line is the regression.
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Figure 6: The maximum population for Salmonella at various constant temperatures described
with the Baranyi model. Line is the regression.
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Fig. 7A, B: Prediction of growth of Salmonella in ground beef at low (A) and high (B) dynamic
patterns of temperature. Closed circles are observed values of Salmonella. Growth curves are
described with the Baranyi model (solid line). The dotted line shows the measured temperature
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Fig. 8: Residual plot for the population of Salmonella along through the storage period at low
(e) and high (m) dynamic patterns of temperature. Solid symbols expressed with the extended
logistic model and open Symbols expressed with the Baranyi model.
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4. DISCUSSION

Control of both pathogenic and spoilage
microbe in a variety of foods is important to
guarantee food safety and quality.
Currently, the majority of food industry
relies on conventional microbiological
methods or rapid microbial techniques for
quantification of microbial growth in food
products. The traditional microbiological
techniques are time-consuming. Rapid
enumeration techniques, although
relatively fast, are expensive and require
necessary pre-enrichment steps to yield a
detectable response. On the other hand,
predictive mathematical models can
provide the estimates of the growth of
foodborne pathogen in a food matrix in a
real time situation (Velugoti et al., 2011).
There are three categories to classify
mathematical models. First based on the
microbiological event categorized into
kinetic and probability models (Roberts,
1989); the second based on modeling
approach categorized into Empirical and
Mechanistic ways (Roels and Kossen,
1978); third based on the variables
considered into primary, secondary and
tertiary (Whiting and Buchanan, 1993).
Baranyi and Roberts published papers
(1993, 1994, and 1995) that gave a good
mathematical basis for mechanistic
modelling of the lag phase. The Baranyi-
model has subsequently been cited in more
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than 300 papers, and has become the most
widely used primary growth model
(Baranyi and Roberts, 2004).

It is worthy to mention that Baranyi model
has an essential problem in its concept of
modeling microbial growth. That is, the
model built on the assumption that the
concentration of a substance or substances
critical to microbial growth would increase
exponentially in a cell during the whole
growth period, which is biologically
impossible (Baranyi and Roberts, 1995). In
addition, Baranyi and Roberts (2004) stated
that purely mechanistic models are very
rare in practical applications. Models in
daily use are, in fact, between the two, using
mechanistic elements when possible and
completing them with empirical approaches
when only observations are available,
which apply on Baranyi and Roberts model,
namely it describes the transition phases,
for either the growth or death situation, in a
way that can be also used for a fluctuating
environment.

Sakha and Fujikawa (2012) compared the
performances of the extended logistic and
Baranyi models for describing the growth
of the same strains used in the present study
of Salmonella, but in pasteurized and
unpasteurized liquid egg. They found that
Baranyi model predicted well most of the
growth curves at various initial doses and
constant temperatures. The results at
different initial doses showed that the r and
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Nmax values calculated by the Baranyi
model were dependent on the initial dose,
while the values of lag phase were reversely
related to it. However, with the extended
logistic model only Nmax values were
clearly dependent on the initial doses,
therefore this relationship expressed by
secondary model and validated
experimentally well. Moreover, the values
of r resulted with the extended logistic
model were nearly double those produced
with the Baranyi model. The growth
kinetics of Salmonella Enteritidis in the
ground beef at constant temperatures
ranging from 8°C to 36°C showed that there
were no Salmonella growth observed at 8°C,
therefore the extended logistic model
cannot describe it, while the Baranyi model
described it when selected to fit data with
no lag phase, but the complete Baranyi
model could not also describe it. The r
values calculated with the extended logistic
and Baranyi models were dependent on
storage temperatures, but the magnitudes of
r values described with Baranyi model were
about half those described with the
extended logistic model. Nmax values
described with both models were dependent
on storage temperatures <28°c. In addition,
the maximum Nmax value obtained by the
extended logistic was greater than this
obtained by Baranyi model, being 9.16 and
8.98 logs CFU/g, respectively. In addition,
lag phase values were reversely related to
storage temperatures <28°c. These
differences between the same growth
parameters in the two models probably due
to those experimentally determined growth
parameters might be influenced not only by
the chosen growth model but also by
procedural details (Peleg and Corradini,
2011).

Generally, the results of statistical criteria
used in the present study to evaluate the
performances of the models showed that
both models described well, but not equally,
the growth of Salmonella in minced beef at
various initial doses, constant and dynamic
temperatures. In more details, the extended
logistic model gave better prediction,

smaller values of RMSE, especially at
various initial doses and constant
temperatures than the Baranyi model.
However, at dynamic temperatures Baranyi
model has smaller values of RMSE than the
extended logistic model. These findings
agree with those reported by Sakha and
Fujikawa (2012) and Juneja et al. (2009),
that both models were similarly able to
describe bacterial growth. In contrast to this
result was Yilmaz (2011) who found that
the modified Gompertz and logistic models
can be used more effectively than the semi
mechanistic Huang and Baranyi models to
predict the effect of plant essential oils on
growth potential of Salmonellae in fish
products. Also, Draper (1988) considered
that the mechanistic models is more
preferable than the empirical ones, as they
usually contain fewer parameters, fit the
data better and extrapolate more sensibly.
While, the field of validity of an empirical
model is much narrower than that of a
theoretical model because they can be
applied only at specific experimental
conditions and cannot be extrapolated out
of the field of investigation (Leguerinel and
Mafart, 2008).

Another third mathematician's
interpretation, that an agreement between
prediction and observation alone only
supports the modeling approach, but by
itself it does not confirm the validity of the
underlying assumptions, especially if
alternative models, based on different
assumptions can also explain and predict
the same results (Peleg and Corradini,
2011). They proposed that agreement
between prediction and observation is a
necessary condition but not sufficient.
Consequently, a slightly better fit of a
particular model to a specific set of
experimental growth results should not be
interpreted as evidence of this model’s
superiority over alternative models. Unless
a large database consisting of several
organisms tested repeatedly is employed,
the relative merits of  different
mathematical models might be better
judged by utilitarian criteria (by its
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mathematical simplicity, flexibility, the
number of its adjustable parameters and,
where appropriate, whether they have
intuitive meaning and not based on the
statistical criteria alone. Finally, depending
on the vision of Peleg and Corradini (2011),
the competition between models will
continue in developing to be more flexible,
simple and useful.
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